

Ore Sorting in Mining

Association of Mining Analysts

20th April, 2016

Dr Toby Strauss (CGeol; EurGeol)

Tomra Sorting Solutions have provided considerable materials and support in preparing this presentation.

Content

Introduction to Sorting

- > Application to Mining
- Benefits and Limitations
- Principles & Technology
 - Sensors
- Testwork and Optimisation
- Economics
- What an Analyst should look at

Introduction to Sensor Based Sorting (SBS)

- Ore sorting is a mineral concentration process where individual ore particles are separated from the unwanted material based on some physical (or chemical) property
- > Ore Sorting can be used for:
 - Pre-Concentration / Waste Rejection
 - > Ore-type diversion
 - Concentration to product

Sensor Based Sorting is the automation of this process

Long History

Hand Picking Ore in Agricola's 1556 "De Re Metallica"

Long History

Hand sorting ore at Sullivan Mine circa. 1915

Source: Wills' Mineral Processing Technology

Long History

Hand sorting ore at a mine in Turkey 2012

Diamond sorting – early days

Namibian diamond rush - circa. 1908 Hand "sorting" diamonds in the Sperrgebiet

Diamond sorting - today

Tomra large diamond recovery (LDR) machine using XRT sensors at Karowe Mine, Botswana.

Diamond sorting - today

1,111 carat diamond recovered by a Tomra large diamond recovery (LDR) machine using XRT sensors at Karowe.

History of Sorting in Mining

- > 1940's Radiometric Sorters
- > 1950's Photometric Sorter
 - Mary Kathleen U mine, Australia
- > 1970's Photometric Sorter
 - GFSA Doornfontein Gold Mine (RTZ Ore Sorters)
 - Looked at difference in colour between lighter "reef" and darker "waste"
 - First to use laser technology
 - First high tonnage sorters

- Historically poor throughput rates
 - Computer processing power
- Misconception of robustness of this technology in mining environment
- Aversion to new technology
 - Unlike the oil industry, mining has been slow to adopt new technologies
 - Mining companies and the financiers promote "tried and trusted, traditional technologies"

Sorting is widespread

MERLYN Consulting

Mining

Applicable for:

Precious metals Base metals · Diamonds Coal · Ferrous metals Copper · Platinum · Slag Industrial minerals · Gold Tailings · Gemstones

Recycling

Applicable for:

E-scrap · CRT Glass · Wood

Single Stream · Paper

Packaging · Wire · C&D waste

Car shredder · Plastics

Organic · MSW · Metals

RDF monitoring

About 10,000

Food

Applicable for:

Dried fruit · Fresh cut · Fruit Nuts · Seeds · Processed potato Whole potatoes · Seafood Meat/Process Analytics Vegetables · Whole products Peeling solutions

Specialty Products

Applicable for:

Raw Materials

Virgin plastics · Synthetic rubber Virgin wood chips · Pharmaceuticals

<u>Tobacco</u>

Treshing stems · Oriental leaf Primary lamina · Primary stems Cigar · Recon · OTP · Additives • ODENDERG *BEST

Common development of core components

б тітесн[®]

• ODENBERG *BEST

Mining Applications

INDUSTRIAL MINERALS

Calcite, quartz, feldspar, magnesite, talc, dolomite, limestone, rock salt, phosphates, potash

 $\textbf{COLOR} \cdot \textbf{XRT} \cdot \textbf{NIR}$

Diamonds, emeralds, rubies, sapphires, tanzanite

Iron, manganese, chromite

NON-FERROUS METALS

Copper, zinc, gold, nickel, tungsten, silver, platinum group metals

Coal, oil shale

Stainless steel slag, carbon steel slag, ferro silica slag, ferro chrome slag, non ferrous slag

Wet Mineral/Ore Processing

And Waste is here

Syncrude Tailings Dam - Mildred Lake

Every single tonne in that tailings pond has had costs for:

- Crushing
- Screening
- > Milling
- Process water
- > Flotation reagents: frothers, collectors, modifiers
- Pumping and pipes
- > Water treatment: filters, thickeners, flocculants
- Ponds' erection, dams, and lining
- Pond monitoring
- > Use of land; local and environmental permits
- ≻ Etc.

An alternative approach

Value throughout the Mining Cycle

Limitations of Ore Sorting

- Sorting only effective within certain particle size ranges:
 - > Too fine, and the throughput decreases
 - Throughput decreases with particle size
 - +10mm is typical lower economic limit
 - > Too coarse, and dilution increases
 - Upper size determined by ore characteristics and sensor
 - e.g. 40 50mm is average penetration depth of XRT
 - Generally less than 100mm
- Every deposit is unique; not all ores amenable to sorting

> Style of mineralisation, mineralogy and liberation

What can be achieved?

- Variations in LIBERATION make physical separation possible – e.g. mining dilution, ore type, grade
- A distinct difference in the physical property must be DETECTABLE – contrast, sensor resolution

Principles and Technology of Sensor Based Sorting

Feed Preparation

- Crushing
- Screening uniform particle sizes

Presentation of feed

- Chute & Belt types
- Clean / Wet / Dry?

Sensing & Processing

- Particle Identification & Location
- Particle examination
- Classification according to machine settings

Separation

> Air jets vs mechanical

Particles presented as a MONOLAYER

- Chute Feed
 - Surface detection
 - Freefall material
 - > Multiple Face Sensors

Belt Feed

- Internal detection
- > Stable particles
- Single Sensor Position

Separation

> High pressure air jets

> Air jets can eject large rocks up to 15kg

> Up to 10% "Overshoot" – particle collisions etc.

Mechanical sorters used by RADOS

Clean / Dry / Wet Samples?

Sensor Technology	Surface detection	Subsurface detection	Comment
Gamma radiation		Yes	Not really applicable on Industrial Minerals
X-Ray transmission		Yes	Very successful
Color camera	Yes	Very limited	Very sensitive to surface coating (dust, clay)
Laser Scattering	Yes	Limited	Using the near surface minerals
Near Infrared	Yes	Limited	Using the near surface minerals
Electro- magnetic		Yes	Based on conductivity Not really applicable on IM

All technologies with full or limited sub-surface detection capabilities could be used without washing water

Sensors available for sorting

X-RAY TRANSMISSION (XRT)

Material property detected: specific atomic density irrespective of size, moisture or pollution level

ELECTROMAGNETIC SENSOR (EM)

Material property detected: electro-magnetic properties like conductivity and permeability

RADIOMETRIC

Material property detected: natural gamma radiation

VISIBLE LIGHT SPECTROMETRY (VIS)

Material property detected: visible spectrum for transparent and opaque materials

COLOR CAMERA (COLOR)

Material property detected: color properties in the color are as red, green and blue

IR CAMERA (IR); TRANSMISSION (IRT)

Material property detected: heat conductivity and heat dissipation Material property detected (IRT): light absorption

X-RAY FLUORESCENCE (XRF)

Material Property detected: elemental composition

NEAR-INFRARED SPECTROMETRY (NIR)

Material property detected: specific and unique spectral properties of reflected light in the near-infrared spectrum

LASER REFLECTION/SCATTERING/FLUORESCENCE

Material property detected:

- + Monochromatic reflection / absorption
- + Scattering of laser light Fluo or bio-luminescence, Super K

Optical Sensing – Colour/VisibleLight

Input fraction (Talc)

- Most popular sorting technology (industry & industrial minerals)
- Detects surface colour differences clean/wet
- Each particle is photographed and the image processed and classified according to the calibrated colours

Requires stable and high quality illumination

Output fractions:

MERLYN

Consulting

Optical Sensing - Wet vs Dry?

> Principle

Certain NIR frequencies excite sample molecules to oscillate – these energy levels are predominantly absorbed.

Other energy levels of the light are diffusely reflected.

This light is directed to the detector unit and analyzed.

Result

Spectrum of the reflection intensity against the wavelengths.

MERLYN

Consulting

Molecules of the sample

NIR-sorting of magnesite

Unfortunately it is difficult to demonstrate invisible effect in photos, ...

Magnesite – low Si

Magnesite – high Si containing particles from low Si pieces

... but the grades are clearly visible for the scanner

Magnesite – high Si

LASER – Principal

- > A laser is permanently scanning the material
- Sorting is based upon the 'penetration' of laser light, which depends on the product structure.
- > A 'glow' or 'scattering'-effect is triggered...

Laser Images

Picture

Raw data Image

Classified data Image

With color one can see no difference between both rocks, whereas using Laser the sorter gets a great signal from the scattering effect inside the Quartz. And the quartz is an indicator for gold....

LASER – Quartz vein hosted Au

> Host Tonalite

Quartz vein

Material generally needs to be washed

Electromagnetic Sensor (EM)

- Feed rates up to up 300Tph
- Material size down to 5mm
- More faster and accurate sensors

EM - Base Metals, Sudbury

- EM ore pre-concentration before further processes (e.g. milling, flotation, hydrometallurgy, etc.)
- The challenge: Remove low grade ore (<0.5% Ni) and waste from feed material

Feature	Value
Sorting Task	Remove all particles <0.5% Ni
Feed rate	approx. 60 t/h
Size range	2550mm
Feed grade	1.4-1.6%
Sorter concentrate	Product 2.0-2.7% Ni Waste 0.1-0.2% Ni
Reject rate	Up to 40%

MERLYN

Consulting

ROM Secondary EM Sorter

X-Ray Transmission

What is the challenge?

XRT-technology measures the level of x-ray energy after the rays have passed through an object. This level of attenuation is directly dependent on atomic density **and** thickness of the object.

XRT works to a particle thickness of \sim 40mm (35mm iron ore, 80mm coal)

This means: Two pieces of different materials can create the same projected picture. So use the Dual Energy technology (DE-XRT).

XRT – Dual Energy image processing

MERLYN

Consulting

- An image transformation of the density images of the two bands then makes it possible to classify each pixel according to atomic density.
- Classification proceeds relative to a reference density, to which the system has been calibrated.

XRT – Nickel ore

XRT – Diamonds

Commercial XRT Sorter

2 x 1.2 m XRT Sorters

Tungsten - Austria

> Mittersill Scheelite Mine (WBH)

- > Opened in 1976 with a head grade of 0.7% WO_3
- Mining up to 500,000 t/y
- ➢ Head grade is now 0.2% WO₃
- Processing plant requires 0.3% WO₃
- Limited capacity of tailings pond

> 2 Parallel XRT sorters to pre-sort scheelite

- > 70 tph; 16-30mm & 30-60mm
- \succ Grade of feed to the processing plant: 0.38% WO₃
- > 50% of sorted material goes straight to waste
- Over 100,000 tpa no longer needs to be processed and disposed of in the tailings pond
 - Extended the mine life
- > XRT waste rock is sold as aggregate for road construction

Commercial XRT Sorter

2.4 m XRT Sorter

Waad Al Shamal Phospate Project

- > ROM: 13.5 million tonnes per annum
- > 70% of ROM will be sorted
- Nine 2.4m wide XRT sorters
- Currently in construction phase: 2017 start-up?

Benefits include:

- Downsizing the downstream process
- Smaller plant footprint
- Reduced consumption of energy, water and chemicals per ton of final product

> Throughput of sorters is no longer an issue

Testwork and Optimisation Application to a project

Testwork Programme for Sorting

MERLYN Consulting

Testwork is Relatively Cheap

Sample Preparation

- Sampling (representative?)
- Crushing
- Screening
 - Material washing?
- Sorting
 - Machine calibration
 - Geologist input

> Assaying

Mass Balance Calculations

Crushing & Screening

- Objective is to maximise the material which goes through the sorter
- Crushing generates fines which bypass the sorters
 - > Upgrade / downgrade of material?
- Minimise fines (-10mm)
 - Poor crushing and/or screening
 - > Avoid oversize

Screening

- Consistent across tests
- Represent screening in a production scenario
 - Single crush

Example of fines generation

	2013	2014	2015	2015	2015
	Sample	Sample	Sample 1	Sample 2	Sample 3
1 st Crush & Screen	0.40/				
Lab1 (-8mm)	9.4%				
1 st Crush & Screen		17 /10/	12 0%	Q 00/	11 20/
Lab1 (-10mm)		12.4%	15.9%	0.9%	11.5%
2 nd Crush &					
Screen		5.9%			
Lab2 (-10mm)					
Re-Screen			12 5%	9.5%	8.6%
Tomra (-8mm)			12.570	5.570	0.070
Slimes			1 7%	1.8%	2.2%
Lab1			4.770	1.070	2.2/0
Total Fines %	9.4%	18.3%	31.1%	20.2%	22.1%

Proportion of Fines generated with each crushing and/or screening Poor screening requires more handling

Screening

- > Min:Max of range should be <3
- Typically 2 size ranges
 - e.g.
 - > -10mm = Fines
 - ≻ +10-20mm
 - ≻ +20-40mm
- Liberation analysis?QEMSCAN

Sizes based on narrowest particle dimension passing through screen

Machine Settings?

Geologists input is important to determine ore types and to calibrate the sorter and selection thresholds

- > What are we trying to do?
 - Determine how the efficiency of sorting (recovery:mass pull) varies with
 - different feed types (ore type, grade etc.)
 - machine settings (thresholds)
 - Quantify the sorting efficiency in such a way that this information can be applied to a block model
 Geometalluray
 - Geometallurgy
 - Improve confidence

Essential Data Collection

Bokan Mountain, HREE - Alaska

- Studies looked at different sensors
 XRT and Radiometric most effective
- > Sorting will lead to 50% rejection to waste

Gowest Gold - 2015 PFS

- > 2 XRT Sorters: 10-25mm, 25-75mm
- > 53% mass pull for 98% Au recovery (incl. fines)
- > Ore upgraded from 4.8 g/t Au to as high as 9g/t

High Grade Samples

Commercial Scale DEXRT Test Results

Economic Considerations

Containerised Installation

Industrial Minerals

- Rock Salt
- Underground colour sorting to remove impurities in Germany, Morocco and Canada
- > Historically in a fluorspar mine
- Requires considerable space
 Conveyors, removal of waste etc

> Not practical in most metal mines

Very rough ballpark figures:

- > Each 1.2m sorter is \sim € 0.5 million
- > Annual Maintenance costs of 10%

Number of machines depends on configuration and throughput rates

Throughputs depend on material density and particle sizes

Rule of Thumb: 10-20mm particles of 2.7 g/cm³ density 15 tph/sensor m

> XRT Energy Consumption:

≻ 10 – 26 KW per sorter

Variation due to width (1.2m or 2.4m) and power of different x-ray tubes and motors

> Compressed Air for Ejection:

- > Depends on feed/hit rate and particle size
- For 1.2m XRT, processing 60 tph of 30-50mm with a hit rate of 25-30% will need 40-50KW compressor power

Belvedere Resources Kopsa AuCu Deposit

- Constrained by pre-existing Ni mill infrastructure
- > 20 km transport from mine to mill
- > PEA looked at 6 scenarios with and without sorting
 - Based on the same block model
- > XRT Sorting:
 - 65% mass rejection
 - 90% Au recovery
 - 75% Cu recovery

> Savings throughout the mine cycle

Comparative project economics

Scenario		1	2	3	4	5	6
Production Rate	(Mtpa)	0.5	0.75	1.0	1.0	1.2	1.2
Sorting					Sorting		Sorting
LOM	(years)	19	13	10	10	9	9
Tonnes to Hitura Plant	(Mt)	9	9	9	3.2	9	3.2
Hitura plant head grade	(Cu %)	0.15%	0.15%	0.15%	0.32%	0.15%	0.32%
Hitura plant head grade	(Au g/t)	0.91	0.91	0.91	2.34	0.91	2.34
Total Op Costs /t ROM	(USD /t)	30.1	27.1	27.9	19.1	27	18.2
Total Op Costs (incl contingency)	(M USD)	273	245	253	173	244	165
Total Cap Costs (incl contingency)	(M USD)	54	55	69	49	70	48
Undiscounted cashflow	(M USD)	-6.6	19.4	-1.4	58.2	5.6	65.5
Post-tax NPV @8%	(M USD)	-11.5	1.2	-11.5	21.8	-8	26.4
Post-tax IRR	(%)	-	10%	-5%	31%	-1%	36%

- Extent of studies
 - > Quantification of sorting efficiency
- > Is the sample representative?
 - Different ore types? (Liberation; disseminated ore)
 Different grades?
- Crushing and Screening?
 - Have fines been suitably accounted for?

Economics

- > Throughput rates?
- Costs
- > Realistic expectations?

Conclusion

Proven technology

Diamonds, Industrial Minerals

Multiple benefits

- Project economics
- More complete exploitation of a deposit
- Environmental

Not just for new projects

- Cost savings
- > Extend resources, lower grade ores become accessible
- Extending mine life

Not a "silver bullet"

> All deposits are unique, not all are amenable to sorting

www.merlyn-consulting.com

toby@merlyn-consulting.com +353 (87) 9870344

